Physical Chemistry I (Chem 331) - Fall 2009
Solutions to Problem Set 1

1) A perfect gas undergoes isothermal compression, which reduces its volume by $3.08 \mathrm{dm}^{3}$. The final pressure and volume of the gas are 6.42 bar and $5.38 \mathrm{dm}^{3}$, respectively. Calculate the original pressure of the gas in (a) bar, (b) atm.

Boyle's law [1.6] in the form $p_{\mathrm{f}} V_{\mathrm{f}}=p_{\mathrm{i}} V_{\mathrm{i}}$ can be solved for either initial or final pressure, hence

$$
\begin{aligned}
& p_{\mathrm{i}}=\frac{V_{\mathrm{f}}}{V_{\mathrm{i}}} \times p_{\mathrm{f}} \\
& V_{\mathrm{f}}=5.38 \mathrm{dm}^{3}, \quad \mathrm{~V}_{\mathrm{i}}=5.38 \mathrm{dm}^{3}+3.08 \mathrm{dm}^{3}=8.46 \mathrm{dm}^{3}, \quad \mathrm{p}_{\mathrm{f}}=6.42 \mathrm{bar}
\end{aligned}
$$

Therefore,
(a) $\quad p_{\mathrm{i}}=\left(\frac{5.38 \mathrm{dm}^{3}}{8.46 \mathrm{dm}^{3}}\right) \times(6.42 \mathrm{bar})=4.08 \mathrm{bar}$
(b) Since $1 \mathrm{~atm}=1.013 \mathrm{bar}, p_{\mathrm{i}}=(4.08 \mathrm{bar}) \times\left(\frac{1 \mathrm{~atm}}{1.013 \mathrm{bar}}\right)=4.03 \mathrm{~atm}$
2) At $0.000^{\circ} \mathrm{C}$ and 1.000 atm, the mass density of the vapor of a hydrocarbon is $1.97 \mathrm{~kg} \mathrm{~m}^{-3}$. What is the molecular formula of the hydrocarbon under these conditions? What is the hydrocarbon?

Since $p<1 \mathrm{~atm}$, the approximation that the vapour is a perfect gas is adequate. Then (as in Exercise 1.7(b)),

$$
\begin{aligned}
& p V=n R T=\frac{m}{M} R T \text {. Upon rearrangement, } \\
& M=\rho\left(\frac{R T}{p}\right)=\left(1.97 \mathrm{~kg} \mathrm{~m}^{-3}\right) \times \frac{\left(8.314 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(273 \mathrm{~K})}{1.013 \times 10^{5} \mathrm{~Pa}}=0.0441 \mathrm{~kg} \mathrm{~mol}^{-1}=44.1 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

The formula of the vapour is then $\mathrm{C}_{3} \mathrm{H}_{8}$, which is one of the propanes.
3) Calculate the pressure exerted by 1.0 mol $\mathrm{C}_{6} \mathrm{H}_{6}$ behaving as (a) a perfect gas, (b) a van der Waals gas when it is confined under the following conditions: (i) at 373.15 K in $22.414 \mathrm{dm}^{3}$, (ii) at 1000 K in 300 cm^{3}. $p=\frac{n R T}{V}[1.8]$

$$
n=1.0 \mathrm{~mol}, \quad T=373.15 \mathrm{~K} \text { (i) or } 1000 \mathrm{~K} \text { (ii) }
$$

$$
V=22.414 \mathrm{dm}^{3} \text { (i) or } 300 \mathrm{~cm}^{3} \text { (ii) }
$$

(i) $p=\frac{(1.0 \mathrm{~mol}) \times\left(8.206 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1}\right) \times(373.15 \mathrm{~K})}{22.414 \mathrm{dm}^{3}}=1.37 \mathrm{~atm}$
(ii) $p=\frac{(1.0 \mathrm{~mol}) \times\left(8.206 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1}\right) \times(1000 \mathrm{~K})}{0.300 \mathrm{dm}^{3}}=2.73 \times 10^{2} \mathrm{~atm}$
(b) $\quad p=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}[1.21 a]$

From Table 1.5, $a=5.507 \mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}$ and $b=6.51 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$. Therefore,

$$
\begin{align*}
\frac{n R T}{V-n b} & \left.=\frac{(1.0 \mathrm{~mol}) \times\left(8.206 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}\right.}{}{ }^{-1} \mathrm{~mol}^{-1}\right) \times(373.15 \mathrm{~K}) \tag{i}\\
{\left[22.414-(1.0) \times\left(6.51 \times 10^{-2}\right)\right] \mathrm{dm}^{3} } & =1.37 \mathrm{~atm} \\
\frac{a n^{2}}{V^{2}} & \left.=\frac{\left(5.507 \mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}\right.}{}{ }^{-2}\right) \times(1.0 \mathrm{~mol})^{2} \\
\left(22.414 \mathrm{dm}^{3}\right)^{2} & =1.1 \overline{1} \times 10^{-2} \mathrm{~atm}
\end{align*}
$$

and $p=1.37 \mathrm{~atm}-1.1 \overline{1} \times 10^{-2} \mathrm{~atm}=1.36 \mathrm{~atm}$
(ii) $\frac{n R T}{V-n b}=\frac{(1.0 \mathrm{~mol}) \times\left(8.206 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(1000 \mathrm{~K})}{(0.300-0.0651) \mathrm{dm}^{3}}$
$=3.4 \overline{9} \times 10^{2} \mathrm{~atm}$

$$
\left.\left.\frac{a n^{2}}{V^{2}}=\frac{\left(5.507 \mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}\right.}{}{ }^{-2}\right) \times(1.0 \mathrm{~mol})^{2}\right)=1.8 \overline{3} \times 10^{2} \mathrm{~atm}
$$

and $p=3.4 \overline{9} \times 10^{2} \mathrm{~atm}-1.8 \overline{4} \times 10^{2} \mathrm{~atm}=1.65 \times 10^{2} \mathrm{~atm}$
4) A certain gas obeys the van der Waals equation with $\mathrm{a}=0.580 \mathrm{~m}^{6} \mathrm{~Pa}$ mol^{-2}. Its volume is found to be $3.50 \times 10-4 \mathrm{~m}^{3} \mathrm{~mol}^{-1}$ at 273 K and 5.0 MPa . From this information calculate the van der Waals constant b. What is the compression factor for this gas at the prevailing temperature and pressure?

The van der Waals equation $[1.21 b]$ is solved for b, which yields

$$
b=V_{\mathrm{m}}-\frac{R T}{\left(p+\frac{a}{V_{\mathrm{m}}^{2}}\right)}
$$

Substituting the data

$$
\begin{aligned}
b & =3.50 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~mol}^{-1}-\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(273 \mathrm{~K})}{\left\{\left(5.0 \times 10^{6} \mathrm{~Pa}\right)+\left(\frac{0.580 \mathrm{~m}^{6} \mathrm{~Pa} \mathrm{~mol}^{-2}}{\left(3.50 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)^{2}}\right)\right\}} \\
& =1.17 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \\
Z & =\frac{p V_{\mathrm{m}}}{R T}[1.17]=\frac{\left(5.0 \times 10^{6} \mathrm{~Pa}\right) \times\left(3.50 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)}{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(273 \mathrm{~K})}=0.77
\end{aligned}
$$

5) In an industrial process, nitrogen is heated to 500 K at a constant volume of $1.000 \mathrm{~m}^{3}$. The gas enters the container at 300 K and 100 atm . The mass of the gas is 92.4 kg . Use the van der Waals equation to determine the approximate pressure of the gas at its working temperature of 500 K . For nitrogen, $\mathrm{a}=1.352 \mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}, \mathrm{~b}=$ $0.0387 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.
The amount of gas is first determined from its mass; then the van der Waals equation is used to determine its pressure at the working temperature. The initial conditions of 300 K and 100 atm are in a sense superfluous information.

$$
\begin{aligned}
& n=\frac{92.4 \mathrm{~kg}}{28.02 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}}=3.30 \times 10^{3} \mathrm{~mol} \\
& V=1.000 \mathrm{~m}^{3}=1.000 \times 10^{3} \mathrm{dm}^{3} \\
& p=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}[1.21 a]=\frac{\left(3.30 \times 10^{3} \mathrm{~mol}\right) \times\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(500 \mathrm{~K})}{\left(1.000 \times 10^{3} \mathrm{dm}^{3}\right)-\left(3.30 \times 10^{3} \mathrm{~mol}\right) \times\left(0.0387 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)} \\
& -\frac{\left(1.352 \mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}\right) \times\left(3.30 \times 10^{3} \mathrm{~mol}\right)^{2}}{\left(1.000 \times 10^{3} \mathrm{dm}^{3}\right)^{2}} \\
& =(155-14.8) \mathrm{atm}=140 \mathrm{~atm} \text {. }
\end{aligned}
$$

6) Suppose that $10.0 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ is confined to $4.860 \mathrm{dm}^{3}$ at 300 K . Predict the pressure exerted by ethane from a) the ideal gas and b) the van der Waals equations of state. Calculate the compression factor based on these calculations. For ethane, $a=5.507 \mathrm{dm}^{6}$ atm $\mathrm{mol}^{-2}, \mathrm{~b}=0.0651$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$
(a) $p=\frac{n R T}{V}[1.8]=\frac{(10.0 \mathrm{~mol}) \times\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(300 \mathrm{~K})}{\text { (b) } \quad p=\frac{n R T}{V-n b}-a\left(\frac{n}{V}\right)^{2}[1.21 a] \quad 4.860 \mathrm{dm}^{3}}=50.7 \mathrm{~atm}$.

$$
\begin{aligned}
&=\left.\frac{(10.0 \mathrm{~mol}) \times\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}\right.}{}{ }^{-1} \mathrm{~mol}^{-1}\right) \times(300 \mathrm{~K}) \\
&\left(4.860 \mathrm{dm}^{3}\right)-(10.0 \mathrm{~mol}) \times\left(0.0651 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \\
&-\left(5.507 \mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}\right) \times\left(\frac{10.0 \mathrm{~mol}^{2}}{4.860 \mathrm{dm}^{3}}\right)^{2} \\
&= 58.4 \overline{9}-23.3 \overline{2}=35.2 \mathrm{~atm} .
\end{aligned}
$$

The compression factor is calculated from its definition [1.17] after inserting $V_{\mathrm{m}}=\frac{V}{n}$.
To complete the calculation of Z, a value for the pressure, p, is required. The implication in the definition [1.17] is that p is the actual pressure as determined experimentally. This pressure is neither the perfect gas pressure nor the van der Waals pressure. However, on the assumption that the van der Waals equation provides a value for the pressure close to the experimental value, we can calculate the compression factor as follows

$$
\left.Z=\frac{p V}{n R T}=\frac{(35.2 \mathrm{~atm}) \times\left(4.860 \mathrm{dm}^{3}\right)}{(10.0 \mathrm{~mol}) \times\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}\right.}{ }^{-1} \mathrm{~mol}^{-1}\right) \times(300 \mathrm{~K}) \quad=0.695 .
$$

