1) A sample consisting of 1.00 mol of the molecules in air is expanded isothermally at $25^{\circ} \mathrm{C}$ from $24.2 \mathrm{dm}^{3}$ to $48.4 \mathrm{dm}^{3}$ (a) reversibly, (b) against a constant external pressure equal to the final pressure of the gas, and (c) freely (against zero external pressure). For the three processes calculate $q, w, \Delta U$, and ΔH.

For all cases $\Delta U=0$, since the internal energy of a perfect gas depends only on temperature. (See Molecular interpretation 2.2 and Section 2.11(b) for a more complete discussion.) From the definition of enthalpy, $H=U+p V$, so $\Delta H=\Delta U+\Delta(p V)=\Delta U+\Delta(n R T)$ (perfect gas). Hence, $\Delta H=0$ as well, at constant temperature for all processes in a perfect gas.
(a) $\Delta U=\Delta H=0$

$$
\begin{align*}
w & =-n R T \ln \left(\frac{V_{\mathrm{f}}}{V_{\mathrm{i}}}\right)[2.11] \tag{2.11}\\
& =-(1.00 \mathrm{~mol}) \times\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K}) \times \ln \left(\frac{48.4 \mathrm{dm}^{3}}{24.2 \mathrm{dm}^{3}}\right) \\
& =-1.72 \times 10^{3} \mathrm{~J}=-1.72 \mathrm{~kJ}
\end{align*}
$$

$q=\Delta U-w[$ First Law] $=0+1.72 \mathrm{~kJ}=+1.72 \mathrm{~kJ}$
(b) $\Delta U=\Delta H=0$

$$
w=-p_{\mathrm{ex}} \Delta V[2.8] \quad \Delta V=(48.4-24.2) \mathrm{dm}^{3}=24.2 \mathrm{dm}^{3}
$$

p_{ex} can be computed from the perfect gas law

$$
\begin{aligned}
& p V=n R T \\
& \text { so } \quad p_{\mathrm{ex}}=p_{\mathrm{f}}=\frac{n R T}{V_{\mathrm{f}}}=\frac{(1.00 \mathrm{~mol}) \times\left(0.08206 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})}{48.4 \mathrm{dm}^{3}}=0.505 \mathrm{~atm} \\
& w=-(0.505 \mathrm{~atm}) \times\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}}{1 \mathrm{~atm}}\right) \times\left(24.2 \mathrm{dm}^{3}\right) \times\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{dm}^{3}}\right) \\
&=-1.24 \times 10^{3} \mathrm{Pam}^{3}=-1.24 \times 10^{3} \mathrm{~J}=-1.24 \mathrm{~kJ} \\
& q=\Delta U-w=0+1.24 \mathrm{~kJ}=+1.24 \mathrm{~kJ}
\end{aligned}
$$

(c) $\Delta U=\Delta H=0$

Free expansion is expansion against no force, so $w=0$ and $q=\Delta U-w=0-0=0$
Comment: An isothermal free expansion of a perfect gas is also adiabatic.
2) A sample of oxygen of mass 96 g at $25.0^{\circ} \mathrm{C}$ is allowed to expand reversibly and adiabatically from $5.00 \mathrm{dm}^{3}$ to $10.00 \mathrm{dm}^{3}$. What is the work done by the gas?

Reversible adiabatic work is

$$
w=C_{V} \Delta T[2.27]=n\left(C_{p, \mathrm{~m}}-R\right) \times\left(T_{\mathrm{f}}-T_{\mathrm{i}}\right)
$$

where the temperatures are related by

$$
T_{\mathrm{f}}=T_{\mathrm{i}}\left(\frac{V_{\mathrm{i}}}{V_{\mathrm{f}}}\right)^{1 / c} \quad[2.28 \mathrm{a}] \quad \text { where } \quad c=\frac{C_{V, \mathrm{~m}}}{R}=\frac{C_{p, \mathrm{~m}}-R}{R}=2.531
$$

So $T_{\mathrm{f}}=[(25.0+273.15) \mathrm{K}] \times\left(\frac{5.00 \mathrm{dm}^{3}}{10.00 \mathrm{dm}^{3}}\right)^{1 / 2311}=227 \mathrm{~K}$
and $w=\left(\frac{96.0 \mathrm{~g}}{32.0 \mathrm{~g} \mathrm{~mol}^{-1}}\right) \times\left[(29.355-8.3145) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right] \times(227-298) \mathrm{K}=-4.48 \mathrm{~kJ}$
3) When $5.00 \mathrm{~mol} \mathrm{~N}_{2}$ is heated at a constant pressure of 3.00 atm , its temperature increases from 298 K to 345 K . Given that the molar heat capacity of N_{2} at constant pressure is $29.125 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, calculate $q, \Delta H$, and ΔU.

$$
\begin{aligned}
& q_{p}=C_{p} \Delta T[2.24]=n C_{p, \mathrm{~m}} \Delta T=(5.00 \mathrm{~mol}) \times\left(29.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(47 \mathrm{~K})=+6.8 \mathrm{~kJ} \\
& \Delta H=q_{p}[2.23 \mathrm{~b}]=+6.8 \mathrm{~kJ} \\
& \Delta U=\Delta H-\Delta(p V)[\text { From } H \equiv U+p V]=\Delta H-\Delta(n R T)[\text { perfect gas }]=\Delta H-n R \Delta T \\
&=(6.8 \mathrm{~kJ})-(5.00 \mathrm{~mol}) \times\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(47 \mathrm{~K})=(6.8 \mathrm{~kJ})-(1.95 \mathrm{~kJ})=+4.8 \mathrm{~kJ}
\end{aligned}
$$

4) The standard enthalpy of combustion of n-propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is -2220 kJ mol^{-1} at $25^{\circ} \mathrm{C}$. From this information and enthalpy of formation data for $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, calculate the enthalpy of formation of n -propane. The enthalpy of formation of propene $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ is $+20.42 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the enthalpy of hydrogenation of propene to propane.

First $\Delta_{\mathrm{f}} H\left[\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{~g}\right]$ is calculated, and then that result is used to calculate $\Delta_{\mathrm{r}} H$ for the hydrogenation

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta_{\mathrm{c}} H=-2220 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \begin{aligned}
& \Delta_{\mathrm{f}} H\left[\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{~g}\right]=-\Delta_{\mathrm{c}} H+3 \Delta_{\mathrm{f}} H\left(\mathrm{CO}_{2}, \mathrm{~g}\right)+4 \Delta_{\mathrm{f}} H\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{~g}\right) \\
&=[+2220+(3) \times(-393.51)+(4) \times(-285.83)] \mathrm{kJ} \mathrm{~mol}^{-1} \\
&=-103.85 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \quad \Delta_{\mathrm{r}} H=? \\
&\left.\begin{array}{c}
\Delta_{\mathrm{r}} H
\end{array}\right] \Delta_{\mathrm{f}} H\left(\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{~g}\right)-\Delta_{\mathrm{f}} H\left[\mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{~g}\right] \\
&=(-103.85-20.42) \mathrm{kJ} \mathrm{~mol}^{-1}=-124.27 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\end{aligned}
$$

5) Benzoic Acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ is a commonly used standard used for determining the calorimeter constant of a bomb calorimeter. The enthalpy of combustion for benzoic acid is very well known and is found to be $\Delta_{c} \mathrm{H}^{9}$ $=-3227 \mathrm{~kJ} / \mathrm{mol}$. If a 0.596 g of benzoic acid is combusted in a bomb calorimeter and found to produce a $0.95^{\circ} \mathrm{C}$ rise in temperature, calculate the calorimeter constant for the apparatus.

If 0.568 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ is subsequently combusted in the bomb calorimeter at the same conditions, and produces a $1.56^{\circ} \mathrm{C}$ rise in temperature, calculate the enthalpy of combustion of naphthalene.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{~s})+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\Delta \mathrm{H}_{\mathrm{m}}=\Delta \mathrm{U}_{\mathrm{m}}+\Delta \mathrm{nRT}$
$-3227 \mathrm{~kJ} / \mathrm{mol}=\Delta \mathrm{U}_{\mathrm{m}}+((7-15 / 2) \times 8.314 \times 298)$
$\Delta \mathrm{U}_{\mathrm{m}}=-3225.7 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{U}=-3225.7 \mathrm{~kJ} / \mathrm{mol} \times(0.596 \mathrm{~g} / 122 \mathrm{~g} / \mathrm{mol})=-15.76 \mathrm{~kJ}$
$\left|q_{v}\right|=|\Delta U|=15.76 \mathrm{~kJ}$
$\mathrm{C}=\mathrm{q}_{\mathrm{v}} / \Delta \mathrm{T}=15.76 \mathrm{~kJ} / 0.95 \mathrm{~K}=16.59 \mathrm{~kJ} / \mathrm{K}$

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{q}_{\mathrm{v}}=\mathrm{C} \Delta \mathrm{~T}=16.59 \mathrm{~kJ} / \mathrm{K} \times 1.56 \mathrm{~K}=25.88 \mathrm{~kJ}=\Delta \mathrm{U} \\
& \Delta \mathrm{U}=25.88 \mathrm{~kJ} /\left(0.568 \mathrm{~g} / 128 \mathrm{~g} \mathrm{~mol}^{-1}\right)=-5829 \mathrm{~kJ} / \mathrm{mol} \\
& \begin{aligned}
\Delta \mathrm{H}_{\mathrm{m}} & \left.=\Delta \mathrm{U}_{\mathrm{m}}+\Delta \mathrm{nRT}=-5829 \mathrm{~kJ} / \mathrm{mol}+((10-12) \times 8.314 \times 298)\right) \\
& =-5834 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
\end{aligned}
$$

6) A sample of nitrogen gas is adiabatically expanded such that its volume triples. If the sample initially is held $25{ }^{\circ} \mathrm{C}$, what is the final temperature of the gas? Given that the initial pressure is 1 atm and the volume is 500 mL , calculate the work done.
$w=C_{v} \Delta T=n\left(C_{p, m}-R\right) \times\left(T_{f}-T_{i}\right)$
$T_{f}=T_{i}\left(V_{i} / V_{f}\right)^{1 / c} \quad$ where $\mathrm{c}=\left(C_{v, m}\right) / R=\left(C_{p, m}-R\right) / R=2.503$
So $T_{f}=298 \mathrm{~K}(1 / 3)^{1 / 2.503}=189 \mathrm{~K}$
So if $w=n\left(C_{p, m}-R\right) \times\left(T_{f}-T_{i}\right)=(P V / R T) \times(29.125-8.314) \times(189-$ 298)

$$
\begin{aligned}
& =(1 \mathrm{~atm} \times 0.5 \mathrm{~L}) /\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}\right)(20.811)(-109) \\
& =-46 \mathrm{~J}
\end{aligned}
$$

