1) The vapour pressure of a substance at $50.0^{\circ} \mathrm{C}$ is 43.0 kPa and its enthalpy of vaporization is $42.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Estimate the temperature at which its vapour pressure is 96.0 kPa .

Assume vapour is a perfect gas and $\Delta_{\text {vap }} H$ is independent of temperature

$$
\begin{aligned}
\ln \frac{p^{*}}{p}=+\frac{\Delta_{\text {vap }} H}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right) \\
\begin{aligned}
\frac{1}{T} & =\frac{1}{T^{*}}+\frac{R}{\Delta_{\text {vap }} H} \ln \frac{p^{*}}{p} \\
& =\frac{1}{323.2 \mathrm{~K}}+\frac{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}{42.2 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}} \times \ln \left(\frac{43.0}{96.0}\right) \\
& =2.936 \times 10^{-3} \mathrm{~K}^{-1} \\
T & =\frac{1}{2.936} \times 10^{-3} \mathrm{~K}^{-1}
\end{aligned}=341 \mathrm{~K}=68^{\circ} \mathrm{C}
\end{aligned}
$$

2) The normal boiling point of heptane is $98.4^{\circ} \mathrm{C}$. Estimate (a) its enthalpy of vaporization and (b) its vapour pressure at $37^{\circ} \mathrm{C}$ and $84^{\circ} \mathrm{C}$.
(a) According to Trouton's rule (Section 3.3(b), eqn 3.16)

$$
\Delta_{\text {vap }} H=\left(85 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times T_{\mathrm{b}}=\left(85 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(371.6 \mathrm{~K})=31 . \overline{6} \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(b) Use the Clausius-Clapeyron equation [Exercise 4.8(a)]

$$
\ln \left(\frac{p_{2}}{p_{1}}\right)=\frac{\Delta_{\text {vap }} H}{R} \times\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

At $T_{2}=371.6 \mathrm{~K}, p_{2}=1.000 \mathrm{~atm}$; thus at $37^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \ln p_{1}=-\left(\frac{31 . \overline{6} \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\right) \times\left(\frac{1}{310.2 \mathrm{~K}}-\frac{1}{371.6 \mathrm{~K}}\right)=-2.02 \overline{45} \\
& p_{1}=0.13 \overline{\mathrm{~atm}}=10 \overline{\mathrm{~atm}} \mathrm{Torr}
\end{aligned}
$$

At $60^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& \ln p_{1}=-\left(\frac{31 . \overline{6} \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\right) \times\left(\frac{1}{357.2 \mathrm{~K}}-\frac{1}{371.6 \mathrm{~K}}\right)=-0.41 \overline{23} \\
& p_{1}=0.66 \overline{\mathrm{~atm}}=50 \overline{3} \mathrm{Torr}
\end{aligned}
$$

3) The molar volume of a certain solid is $122.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ at 1.00 atm and 483.15 K , its melting temperature. The molar volume of the liquid at this temperature and pressure is $142.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. At 1.29 MPa the melting temperature changes to 485.34 K . Calculate the enthalpy and entropy of fusion of the solid.

$$
\begin{aligned}
& \frac{\mathrm{d} p}{\mathrm{~d} T}=\frac{\Delta S_{\mathrm{m}}}{\Delta V_{\mathrm{m}}} \\
& \Delta_{\mathrm{fiss}} S=\Delta V_{\mathrm{m}}\left(\frac{\mathrm{~d} p}{\mathrm{~d} T}\right) \approx \Delta V_{\mathrm{m}} \frac{\Delta p}{\Delta T}
\end{aligned}
$$

assuming $\Delta_{\text {fis }} S$ and ΔV_{m} independent of temperature.

$$
\begin{aligned}
\Delta_{\text {fus }} S & =\left(142.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}-122.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) \times \frac{\left(1.26 \times 10^{6} \mathrm{~Pa}\right)-\left(1.01 \times 10^{5} \mathrm{~Pa}\right)}{485.34 \mathrm{~K}-483.15 \mathrm{~K}} \\
& =\left(20.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) \times\left(\frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{~cm}^{3}}\right) \times\left(5.29 \times 10^{5} \mathrm{~Pa} \mathrm{~K}^{-1}\right) \\
& =10.90 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=10.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta_{\text {fus }} H & =T_{\mathrm{f}} \Delta S
\end{aligned}
$$

