1) At 2257 K and 1.00 atm total pressure, water is 1.77 per cent dissociated at equilibrium by way of the reaction $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})<--->2$ $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$. Calculate (a) K, (b) $\Delta_{\mathrm{r}} G$ - and (c) $\Delta_{\mathrm{r}} G$ at this temperature.

We draw up the following equilibrium table (Example 7.2). α is the equilibrium extent of dissociation.

	$\mathrm{H}_{2} \mathrm{O}$	H_{2}	O_{2}
Amount at equilibrium	$(1-\alpha) n$	αn	$\frac{1}{2} \alpha n$
Mole fraction	$\frac{1-\alpha}{1+\frac{1}{2} \alpha}$	$\frac{\alpha}{1+\frac{1}{2} \alpha}$	$\frac{\frac{1}{2} \alpha}{1+\frac{1}{2} \alpha}$
Partial pressure	$\frac{(1-\alpha) p}{1+\frac{1}{2} \alpha}$	$\frac{\alpha p}{1+\frac{1}{2} \alpha}$	$\frac{\frac{1}{2} \alpha p}{1+\frac{1}{2} \alpha}$

(a) $\begin{aligned} K & =\left(\prod_{\mathrm{J}} a_{\mathrm{J}}^{\nu_{\mathrm{J}}}\right)_{\text {equilibrium }}[7.16] ; \quad a_{\mathrm{J}}=\frac{p_{\mathrm{J}}}{p^{\ominus}} \text { [assume gases are perfect]. } \\ K & =\frac{\left(p_{\mathrm{H}_{2}} / p^{\ominus}\right)^{2} \times\left(p_{\left.\mathrm{O}_{2} / p^{\ominus}\right)}[7.16]=\frac{\left(\alpha p /\left(1+\frac{1}{2} \alpha\right) p^{\ominus}\right)^{2} \times\left(\frac{1}{2} \alpha p /\left(1+\frac{1}{2} \alpha\right) p^{\ominus}\right)}{\left((1-\alpha) p /\left(1+\frac{1}{2} \alpha\right) p^{\ominus}\right)^{2}}\right.}{\left(p_{\mathrm{H}_{2} \mathrm{O}} / p^{\ominus}\right)^{2}} \\ & =\frac{\alpha^{3} p}{2(1-\alpha)^{2} \times\left(1+\frac{1}{2} \alpha\right) p^{\ominus}}=\frac{(0.0177)^{3}}{2(1-0.0177)^{2} \times\left(1+\frac{1}{2} \times 0.0177\right)} \\ & =2.84 \overline{8} \times 10^{-6}=2.85 \times 10^{-6} .\end{aligned}$
(b) $\Delta_{\mathrm{r}} G^{\ominus}=-R T \ln K[7.8]$
$=-\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \times(2257 \mathrm{~K}) \times \ln \left(2.84 \overline{8} \times 10^{-6}\right)=2.40 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
$=+240 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(c) $\Delta_{\mathrm{r}} G=0$ [the system is at equilibrium].
2) Dinitrogen tetroxide is 18.46 per cent dissociated at $25^{\circ} \mathrm{C}$ and 1.00 bar in the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})<--->2 \mathrm{NO}_{2}(\mathrm{~g})$. Calculate (a) K at $25^{\circ} \mathrm{C}$, (b) $\Delta_{\mathrm{r}} G^{-}$, (c) K at $100^{\circ} \mathrm{C}$ given that $\Delta_{\mathrm{r}} H^{-}=+57.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ over the temperature range.

We draw up the following equilibrium table.

	$\mathrm{N}_{2} \mathrm{O}_{4}$	NO_{2}
Amount at equilibrium	$(1-\alpha) n$	$2 \alpha n$
Mole fraction	$\frac{1-\alpha}{1+\alpha}$	$\frac{2 \alpha}{1+\alpha}$
Partial pressure	$\frac{(1-\alpha) p}{1+\alpha}$	$\frac{2 \alpha p}{1+\alpha}$

(a) Assuming the gases are perfect $a_{\mathrm{J}}=\left(\frac{p_{\mathrm{J}}}{p^{\ominus}}\right)$; hence

$$
\begin{aligned}
& K=\frac{\left(p_{\left.\mathrm{NO}_{2} / p^{\ominus}\right)^{2}}^{\left(p_{\mathrm{N}_{2} \mathrm{O}_{4}} / p^{\ominus}\right)}[7.16]=\frac{4 \alpha^{2} p}{\left(1-\alpha^{2}\right) p^{\ominus}}=\frac{4 \alpha^{2}}{\left(1-\alpha^{2}\right)}\left[p=p^{\ominus}\right]\right.}{K}=\frac{(4) \times(0.1846)^{2}}{1-(0.1846)^{2}}=0.1411 .
\end{aligned}
$$

(b) $\quad \Delta_{\mathrm{r}} G^{\ominus}=-R T \ln K[7.8]=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298.2 \mathrm{~K}) \times \ln (0.1411)$

$$
=4.855 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}=+4.855 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(c) $\quad \ln K\left(100^{\circ} \mathrm{C}\right)=\ln K\left(25^{\circ} \mathrm{C}\right)-\frac{\Delta_{\mathrm{r}} H^{\ominus}}{R}\left(\frac{1}{373.2 \mathrm{~K}}-\frac{1}{298.2 \mathrm{~K}}\right)$ [7.25],

$$
\begin{aligned}
& \ln K\left(100^{\circ} \mathrm{C}\right)=\ln (0.1411)-\left(\frac{57.2 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\right) \times\left(-6.739 \times 10^{-4} \mathrm{~K}^{-1}\right)=2.678 \\
& K\left(100^{\circ} \mathrm{C}\right)=14.556
\end{aligned}
$$

3) From information in the Data section, calculate the standard Gibbs energy and the equilibrium constant at (a) 298 K and (b) 400 K for the reaction $\mathrm{PbO}(\mathrm{s})+\mathrm{CO}(\mathrm{g})<--->\mathrm{Pb}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$. Assume that the reaction enthalpy is independent of temperature.
(a) $\Delta_{\mathrm{r}} G^{\ominus}=\sum_{\mathrm{J}} \nu_{\mathrm{J}} \Delta_{\mathrm{f}} G^{\ominus}(\mathrm{J})[7.12(\mathrm{~b})]$.

$$
v(\mathrm{~Pb})=1, \quad v\left(\mathrm{CO}_{2}\right)=1, \quad v(\mathrm{PbO})=-1, \quad v(\mathrm{CO})=-1
$$

The equation is

$$
\begin{aligned}
& \begin{aligned}
0=\mathrm{Pb}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})-\mathrm{PbO}(\mathrm{~s})-\mathrm{CO}(\mathrm{~g}) . \\
\begin{aligned}
\Delta_{\mathrm{r}} G^{\ominus} & =\Delta_{\mathrm{f}} G^{\ominus}(\mathrm{Pb}, \mathrm{~s})+\Delta_{\mathrm{f}} G^{\ominus}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)-\Delta_{\mathrm{f}} G^{\ominus}(\mathrm{PbO}, \mathrm{~s}, \mathrm{red})-\Delta_{\mathrm{f}} G^{\ominus}(\mathrm{CO}, \mathrm{~g}) \\
& =\left(-394.36 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-\left(-188.93 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-\left(-137.17 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& =-68.26 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\end{aligned} \\
\begin{aligned}
\ln K= & \frac{-\Delta_{\mathrm{r}} G^{\ominus}}{R T}[7.8]=\frac{+68.26 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})}=27.55 ; \quad K=9.2 \times 10^{11} . \\
\Delta_{\mathrm{r}} H^{\ominus} & =\Delta_{\mathrm{f}} H^{\ominus}(\mathrm{Pb}, \mathrm{~s})+\Delta_{\mathrm{f}} H^{\ominus}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)-\Delta_{\mathrm{f}} H^{\ominus}(\mathrm{PbO}, \mathrm{~s}, \mathrm{red})-\Delta_{\mathrm{f}} H^{\ominus}(\mathrm{CO}, \mathrm{~g}) \\
& =\left(-393.51 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-\left(-218.99 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-\left(-110.53 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& =-63.99 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\end{aligned}
\end{aligned} .
\end{aligned}
$$

(b)
$\ln K(400 \mathrm{~K})=\ln K(298)-\frac{\Delta_{\mathrm{r}} H^{\ominus}}{R}\left(\frac{1}{400 \mathrm{~K}}-\frac{1}{298 \mathrm{~K}}\right)[7$.

$$
\begin{equation*}
=27.55-\left(\frac{-63.99 \times 10^{3} \mathrm{Jmol}^{-1}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\right) \times\left(-8.55 \overline{7} \times 10^{-4} \mathrm{~K}^{-1}\right)=20.9 \overline{6} \tag{7.25}
\end{equation*}
$$

$K(400 \mathrm{~K})=1.3 \times 10^{9}$.

$$
\begin{aligned}
\Delta_{\mathrm{r}} G^{\ominus}(400 \mathrm{~K}) & =-R T \ln K(400 \mathrm{~K})[7.8]=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(400 \mathrm{~K}) \times(20.9 \overline{6}) \\
& =-6.97 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}=-69.7 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

4) In the gas-phase reaction $2 \mathrm{~A}+\mathrm{B}<--->3 \mathrm{C}+2 \mathrm{D}$, it was found that when $1.00 \mathrm{~mol} \mathrm{~A}, 2.00 \mathrm{~mol} \mathrm{~B}$, and 1.00 mol D were mixed and allowed to come to equilibrium at $25^{\circ} \mathrm{C}$, the resulting mixture contained 0.90 mol C at a total pressure of 1.00 bar. Calculate (a) the mole fractions of each species at equilibrium, (b) K_{x}, (c) K, and (d) $\Delta_{\mathrm{r}} G^{-}$.

Draw up the following equilibrium table.

	A	B	C	D	Total
Initial amounts/mol	1.00	2.00	0	1.00	4.00
Stated change/mol	-0.60	-0.30	+0.90	+0.60	
Implied change/mol	0.40	1.70	0.90	1.60	4.60
Equilibrium amounts/mol Mole fractions	0.087	0.370	0.196	0.348	1.001

(a) The mole fractions are given in the table.
(b) $K_{x}=\prod_{\mathrm{J}} x_{\mathrm{J}}^{\nu_{\mathrm{J}}}$ [analogous to eqn 7.16 and Illustration 7.5],

$$
K_{x}=\frac{(0.196)^{3} \times(0.348)^{2}}{(0.087)^{2} \times(0.370)}=0.32 \overline{6}=0.33
$$

(c) $p_{\mathrm{J}}=x_{\mathrm{J}} p, \quad p=1$ bar, $\quad p^{\ominus}=1$ bar.

Assuming that the gases are perfect, $a_{\mathrm{J}}=\frac{p_{\mathrm{J}}}{p^{\ominus}}$; hence

$$
\begin{aligned}
K & =\frac{\left(p_{\mathrm{C}} / p^{\ominus}\right)^{3} \times\left(p_{\mathrm{D}} / p^{\ominus}\right)^{2}}{\left(p_{\mathrm{A}} / p^{\ominus}\right)^{2} \times\left(p_{\mathrm{B}} / p^{\ominus}\right)} \\
& =\frac{x_{\mathrm{C}}^{3} x_{\mathrm{D}}^{2}}{x_{\mathrm{A}}^{2} x_{\mathrm{B}}} \times\left(\frac{p}{p^{\ominus}}\right)^{2}=K_{x} \quad \text { when } \quad p=1.00 \mathrm{bar}=0.33 .
\end{aligned}
$$

(d) $\Delta_{\mathrm{r}} G^{\ominus}=-R T \ln K=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K}) \times(\ln 0.32 \overline{6})$

$$
=+2.8 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}
$$

5) The standard reaction Gibbs energy of the isomerization of borneol $\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OH}\right)$ to isoborneol in the gas phase at 503 K is +9.4 $\mathrm{kJ} \mathrm{mol}^{-1}$. Calculate the reaction Gibbs energy in a mixture consisting of 0.15 mol of borneol and 0.30 mol of isoborneol when the total pressure is 600 Torr.

Let $\mathrm{B}=$ borneol and $\mathrm{I}=$ isoborneol.

$$
\begin{aligned}
& \Delta_{\mathrm{r}} G=\Delta G^{\diamond}+R T \ln Q[7.11], \quad Q=\frac{p_{\mathrm{I}}}{p_{\mathrm{B}}}[7.13(\mathrm{~b})] . \\
& p_{\mathrm{B}}=x_{\mathrm{B}} p=\frac{0.15 \mathrm{~mol}}{0.15 \mathrm{~mol}+0.30 \mathrm{~mol}} \times 600 \mathrm{Torr}=200 \mathrm{Torr} ; \quad p_{\mathrm{I}}=p-p_{\mathrm{B}}=400 \mathrm{Torr} . \\
& Q=\frac{400 \mathrm{Torr}}{200 \mathrm{Torr}}=2.00 . \\
& \Delta_{\mathrm{r}} G=\left(+9.4 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(503 \mathrm{~K}) \times(\ln 2.00)=+12.3 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\end{aligned}
$$

6) The standard Gibbs energy of formation of $\mathrm{NH}_{3}(\mathrm{~g})$ is -16.5 kJ mol^{-1} at 298 K . What is the reaction Gibbs energy when the partial pressure of the $\mathrm{N}_{2}, \mathrm{H}_{2}$, and NH_{3} (treated as perfect gases) are 3.0 bar, 1.0 bar , and 4.0 bar , respectively? What is the spontaneous direction of the reaction in this case?

$$
\begin{aligned}
& \Delta_{\mathrm{r}} G=\Delta G^{\ominus}+R T \ln Q[7.11] ; \quad Q=\prod_{\mathrm{J}} a_{\mathrm{J}} v_{\mathrm{J}}[7.13(b)] . \\
& \text { For } \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g}), \\
& Q=\frac{\left(\frac{p\left(\mathrm{NH}_{3}\right)}{p^{\ominus}}\right)}{\left(\frac{p\left(\mathrm{~N}_{2}\right)}{p^{\ominus}}\right)^{1 / 2}\left(\frac{p\left(\mathrm{H}_{2}\right)}{p^{\ominus}}\right)^{3 / 2}}\left[a_{\mathrm{J}}=\frac{p_{\mathrm{J}}}{p^{\ominus}} \text { for perfect gases }\right] \\
& \quad=\frac{p\left(\mathrm{NH}_{3}\right) p^{\ominus}}{p\left(\mathrm{~N}_{2}\right)^{1 / 2} p\left(\mathrm{H}_{2}\right)^{3 / 2}}=\frac{4.0}{(3.0)^{1 / 2} \times(1.0)^{3 / 2}}=\frac{4.0}{\sqrt{3.0}} .
\end{aligned}
$$

Therefore, $\Delta_{\mathrm{r}} G=\left(-16.45 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+R T \ln \frac{4.0}{\sqrt{3.0}}=\left(-16.45 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+\left(2.07 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

$$
=-14.38 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Since $\Delta_{\mathrm{r}} G<0$, the spontaneous direction of reaction is toward products.
7) Write the cell reaction and electrode half-reactions and calculate the standard emf of each the following cells:
(a) $\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(\mathrm{aq})\right|\left|\mathrm{AgNO}_{3}(\mathrm{aq})\right| \mathrm{Ag}$
(b) $\mathrm{Cd}^{2}\left|\mathrm{CdCl}_{2}(\mathrm{aq})\right|\left|\mathrm{HNO}_{3}(\mathrm{aq})\right| \mathrm{H}_{2}(\mathrm{~g}) \mid \mathrm{Pt}$
(c) $\operatorname{Pt}\left|\mathrm{K}_{3}\left[(\mathrm{CN})_{6}\right](\mathrm{aq}), \mathrm{K}_{4}\left[(\mathrm{CN})_{6}\right](\mathrm{aq}) \| \mathrm{CrCl}_{3}(\mathrm{aq})\right| \mathrm{Cr}$
(a) $\quad \mathrm{R}: 2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})$

$$
\frac{E^{\ominus}}{+0.80 \mathrm{~V}}
$$

L: $\mathrm{Zn}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
Overall ($\mathrm{R}-\mathrm{L}$): $2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})$
$-0.76 \mathrm{~V}$
$+1.56 \mathrm{~V}$
(b) $\quad \mathrm{R}: 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
L: $\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$
0
Overall $(\mathrm{R}-\mathrm{L}): \mathrm{Cd}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$-0.40 \mathrm{~V}$
(c) $\mathrm{R}: \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$
$+0.40 \mathrm{~V}$ $-0.74 \mathrm{~V}$
$\mathrm{L}: 3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}{ }_{(\mathrm{aq})}+3 \mathrm{e}^{-} \rightarrow 3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}(\mathrm{aq}) \quad+0.36 \mathrm{~V}$
Overall $(\mathrm{R}-\mathrm{L}): \mathrm{Cr}^{3+}(\mathrm{aq})+3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{s})+3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}(\mathrm{aq}) \quad-1.10 \mathrm{~V}$
8) Devise cells in which the following are the reactions and calculate the standard emf in each case:
(a) $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq})->\mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
(b) $2 \mathrm{AgCl}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})->2 \mathrm{HCl}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
(c) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(a) $\quad \mathrm{R}: 2 \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$

$$
\frac{E^{\ominus}}{+0.34 \mathrm{~V}}
$$

$\mathrm{L}: \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$
Hence the cell is $\mathrm{Zn}(\mathrm{s})\left|\mathrm{ZnSO}_{4}(\mathrm{aq})\right|\left|\mathrm{CuSO}_{4}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{s})$
(b) $\quad \mathrm{R}: \mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq})$

L: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$
$-0.76 \mathrm{~V}$
$+1.10 \mathrm{~V}$
$+0.22 \mathrm{~V}$
and the cell is $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})$
or $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HCl}(\mathrm{aq})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})$
(c) $\quad \mathrm{R}: \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (l)

L: $4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})$
and the cell is $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\left|\mathrm{O}_{2}(\mathrm{~g})\right| \mathrm{Pt}$

0
$+0.22 \mathrm{~V}$
$+1.23 \mathrm{~V}$
0
$+1.23 \mathrm{~V}$

